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Motivation

• Various protections are required to protect software against exploitation
• Prior work targets conventional systems and software-only solutions
• Embedded domain (e.g., IoT, Edge) becomes more and more important

=⇒ Challenge: Design solutions for constrained embedded devices

Goals

• Design hardware-based security mechanisms for embedded devices
• Utilize emerging technologies
• Accelerate development via virtual prototyping
• Verify and validate security mechanisms
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Work packages and interdependence of planned collaboration

Hardware-based Pointer Protection for RISC-V

Motivation
• Memory unsafe languages can be used to bypass software security
• Adversaries can hijack pointers and overwrite mission-critical data
• Attacks like buffer overflow and return-oriented programming can lead to
memory vulnerabilities

Example of memory attacks
a. Buffer overflow b. Return-oriented programming

Implementing Tagged Memory in the RISC-V VP
• The memory is partitioned into a data space and a tag space
• The tag space is not available for data storage
• Each capability-sized chunk of data space is mapped to a single bit in the
tag space, which decides whether the chunk holds capability or data

• Tag space is organized in a tree-like data structure for easier access of tags
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Extending the Instruction Set

The RISC-V instruction set is extended with:
• Capability-inspection instructions
• Capability-modification instructions
• Capability-arithmetic instructions
• Capability-comparison instructions
• Capability-based control flow instructions
• Capability-based load/store instructions (for both data and capability)

Possible Solution
• Employ hardware to validate pointer access → CHERI
• CHERI differentiates between pointer and data using tags
• CHERI employs both bounds checks as well as hardware permissions in
enhanced pointers (known as capabilities)

• CHERI offers protection against common memory vulnerabilities, like buffer
overflow, use-after-free and return/jump-oriented programming attacks

• CHERI machines can run legacy codes too (backward compatibility)

Latest compressed capability format of CHERI

Implementing CHERI-CPU in the RISC-V VP
• Registers are extended to hold full capabilities (tag is stored separately)
• Special Capability Registers added (e.g. DDC) or extended from existing
CSRs (e.g. mtvec → MTCC)

• Capability structure changed: unnecessary architecture bit used for better
bounds precision
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Future Plans and Publications

Future Plans

• Adding compressed CHERI instructions
• Verification of security notions like non-interference and monotonicity in the
CHERI VP

• Designing a faster tag space using in-memory computing

Publications

• Das, S., Lüth, C. and Drechsler, R., 2025. Designing Memory Protection
for a RISC- V Nano-VP. In 3rd Workshop on Nano Security: From
Nano-Electronics to Secure Systems (NanoSec’25)
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