
EMBOSOM
Emigrating Embedded Software Security into Modern Emerging Hardware Paradigms

Spandan Das
Universität Bremen

Motivation

• Various protections are required to protect software against exploitation
• Prior work targets conventional systems and software-only solutions
• Embedded domain (e.g., IoT, Edge) becomes more and more important

=⇒ Challenge: Design solutions for constrained embedded devices

Goals

• Design hardware-based security mechanisms for embedded devices
• Utilize emerging technologies
• Accelerate development via virtual prototyping
• Verify and validate security mechanisms

Structure of Work Programme

WP 3: Emerging
Technolgies for VPs

WP 2: Hardware
based software

security mechanism

WP 5: VP enhanced w/ security
features

WP 6: Compiler
support

WP 4: Verification of
security properties

WP 7: Embedded
Software support and
evaluation with real
world applications

WP 1: Requirements
analysis of Software

Security through
Hardware based
mechanisms for

Embedded Systems
through Emerging

Technologies

Ruhr University Bochum (RUB)University of Bremen (UHB) Both applicants, UHB + RUB

Work packages and interdependence of planned collaboration

Hardware-based Pointer Protection for RISC-V

Motivation
• Memory unsafe languages can be used to bypass software security
• Adversaries can hijack pointers and overwrite mission-critical data
• Attacks like buffer overflow and return-oriented programming can lead to
memory vulnerabilities

Example of memory attacks
a. Buffer overflow b. Return-oriented programming

Implementing Tagged Memory in the RISC-V VP
• The memory is partitioned into a data space and a tag space
• The tag space is not available for data storage
• Each capability-sized chunk of data space is mapped to a single bit in the
tag space, which decides whether the chunk holds capability or data

• Tag space is organized in a tree-like data structure for easier access of tags

Root bits

Tag bits

Tag Space

Free Memory

Block 1

Block 2

Tagged Memory Tag-tree

Extending the Instruction Set

The RISC-V instruction set is extended with:
• Capability-inspection instructions
• Capability-modification instructions
• Capability-arithmetic instructions
• Capability-comparison instructions
• Capability-based control flow instructions
• Capability-based load/store instructions (for both data and capability)

Possible Solution
• Employ hardware to validate pointer access → CHERI
• CHERI differentiates between pointer and data using tags
• CHERI employs both bounds checks as well as hardware permissions in
enhanced pointers (known as capabilities)

• CHERI offers protection against common memory vulnerabilities, like buffer
overflow, use-after-free and return/jump-oriented programming attacks

• CHERI machines can run legacy codes too (backward compatibility)

Latest compressed capability format of CHERI

Implementing CHERI-CPU in the RISC-V VP
• Registers are extended to hold full capabilities (tag is stored separately)
• Special Capability Registers added (e.g. DDC) or extended from existing
CSRs (e.g. mtvec → MTCC)

• Capability structure changed: unnecessary architecture bit used for better
bounds precision

a’32

Normal register

CHERI-extended register

Tag bit

p’12 T’4 B’6

a’32

BE’2TE’2L7 IEotype’4

Future Plans and Publications

Future Plans

• Adding compressed CHERI instructions
• Verification of security notions like non-interference and monotonicity in the
CHERI VP

• Designing a faster tag space using in-memory computing

Publications

• Das, S., Lüth, C. and Drechsler, R., 2025. Designing Memory Protection
for a RISC- V Nano-VP. In 3rd Workshop on Nano Security: From
Nano-Electronics to Secure Systems (NanoSec’25)

Contact:
Christoph Lüth1, Tim Güneysu2, Pascal Sasdrich2, Rolf Drechsler1
1 Universität Bremen, 2 Ruhr-Universität Bochum
{clueth,drechsler}@uni-bremen.de

{tim.guneysu,pascal.sasdrich}@rub.de

{clueth,drechsler}@uni-bremen.de
{tim.guneysu,pascal.sasdrich}@rub.de

