
Moodle & Verilator make open-source, web-based
automated marking of SystemVerilog labs a reality

Automatically Assessing SystemVerilog Using Moodle

Graeme M. Bragg, Jules Field

Assessment: Students are presented with

a text box in their browser to enter code

as shown in Figure 1. More complex

assignments can allow the submission of

additional source files. The output of the

instructor-supplied testbench, or module,

is presented below the submission once

a student clicks “check”.

Background: In 2023 the School of Electronics and Computer Science at the University of Southampton began experimenting with

Moodle for a new VLE. It was used in the 2024/25 academic year for a new Computer Engineering undergraduate programme, which

includes a Digital Computer Systems module with significant SystemVerilog content. Students received one introductory SystemVerilog

lecture before undertaking three assessed laboratories and a CPU design coursework. We used Moodle with the CodeRunner plugin to

simulate and mark student-submitted SystemVerilog during the assessed laboratories. This poster presents some of our experiences.

Implementation: SystemVerilog support

is implemented as a custom language

within Jobe, a job engine for sandboxed

remote execution of student-submitted

code. A Jobe job specifies the language,

execution environment, source code, and

optional support files. For SystemVerilog,

Verilator is used for execution.

At least two source files are required: the

module under test and a testbench. One

is provided by the instructor and the

other by the student. Additional files,

such as memory initialisation and sub-

modules, can be submitted by either the

instructor or student as appropriate

Submitted files are then compiled and

run by Verilator with the output filtered

to remove the “finish" log. Filtered output

is then returned to CodeRunner for

marking and display to the student.

Figure 1: Student SystemVeriolog submission with
supporting files showing graded testbench output.

Limitations & Future Work: Current

marking is all-or-nothing: an incorrect

answer results in zero marks. Improved

marking capabilities are planned.

Simulation output is currently limited to

the output of $display and $write

tasks. Other interactive approaches, such

as the Cambridge SystemVerilog Tutor,

present simulation waveforms. We would

like to implement similar functionality.

Figure 2: Inline interactive SystemVerilog
element. These can be added to module
pages allowing students to explore concepts.

Teaching: CodeRunner can also be used

for interactive teaching. Inline interactive

code elements (Figure 2) can be added

to module webpages, allowing students

to experiment with SystemVerilog

without individual setup overhead.

{gmb | jules}@ecs.soton.ac.uk

	Slide Number 1

