Unpredictable by Design: Race Hazard & Jitter-Enhanced TRNG with Braided Logic Gates on FPGA

Hossam O. Ahmed, College of Engineering and Technology, American University of the Middle East, Kuwait - Orcid: 0000-0002-6825-9786

Co-authors:

- Donghoon Kim, Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, USA
- William J. Buchanan, School of Computing, Engineering and the Built Environment, Edinburgh Napier University, U.K.

Why TRNG is Important?

- **Cryptographic Security:** TRNGs provide unpredictable keys, making it extremely difficult for attackers to guess or reproduce encryption keys used in secure communications.
- Authentication & Digital Signatures: Strong randomness is required for secure authentication protocols and digital signatures to prevent impersonation and replay attacks.
- Protection Against Side-Channel Attacks: High-quality random numbers prevent attackers from exploiting predictable patterns in hardware or software implementations.
- Quantum-Resilient Security: TRNGs enable quantum-resistant cryptographic algorithms, ensuring robust security in the face of future quantum computing threats.
- Al Model Integrity: In artificial intelligence, random initialization and data shuffling enabled by TRNGs are essential for robust model training and preventing bias or overfitting.
- **Secure Data Generation for AI:** TRNGs are fundamental to synthetic data generation, privacy-preserving algorithms, and federated learning, where trustworthiness and unpredictability are crucial.

The Proposed B+HCCES TRNG Module

- In this work, we propose a True Random Number Generator (TRNG) architecture named **Braided and Hybrid Cross-Coupled Entropy Source (B+HCCES) TRNG** module.
- The proposed B+HCCES TRNG module generates random numbers based on the race hazard and jitter of braided and cross-coupled combinational logic gates.
- The B+HCCES architecture depends on: 1) Proposed HCCLG module. 2) Proposed B-XOR-LG module.

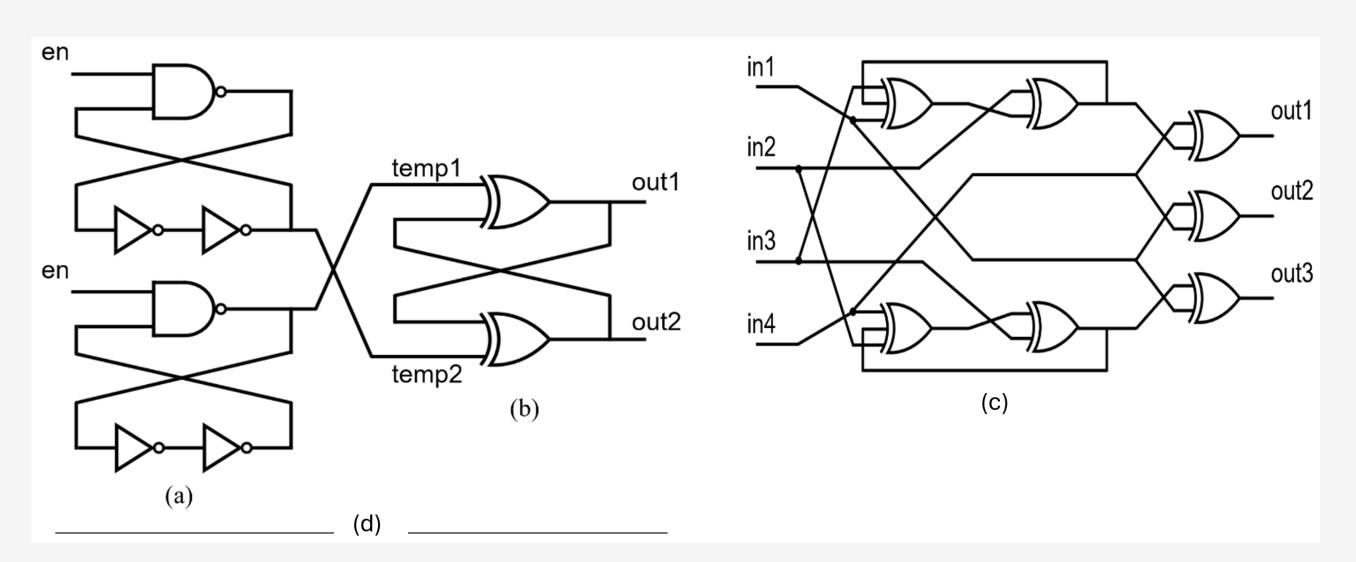


Figure 1: (a) ring Oscillator. (b) CCX module. (c) Proposed B-XOR-LG module. (d) the proposed HCCLG module.

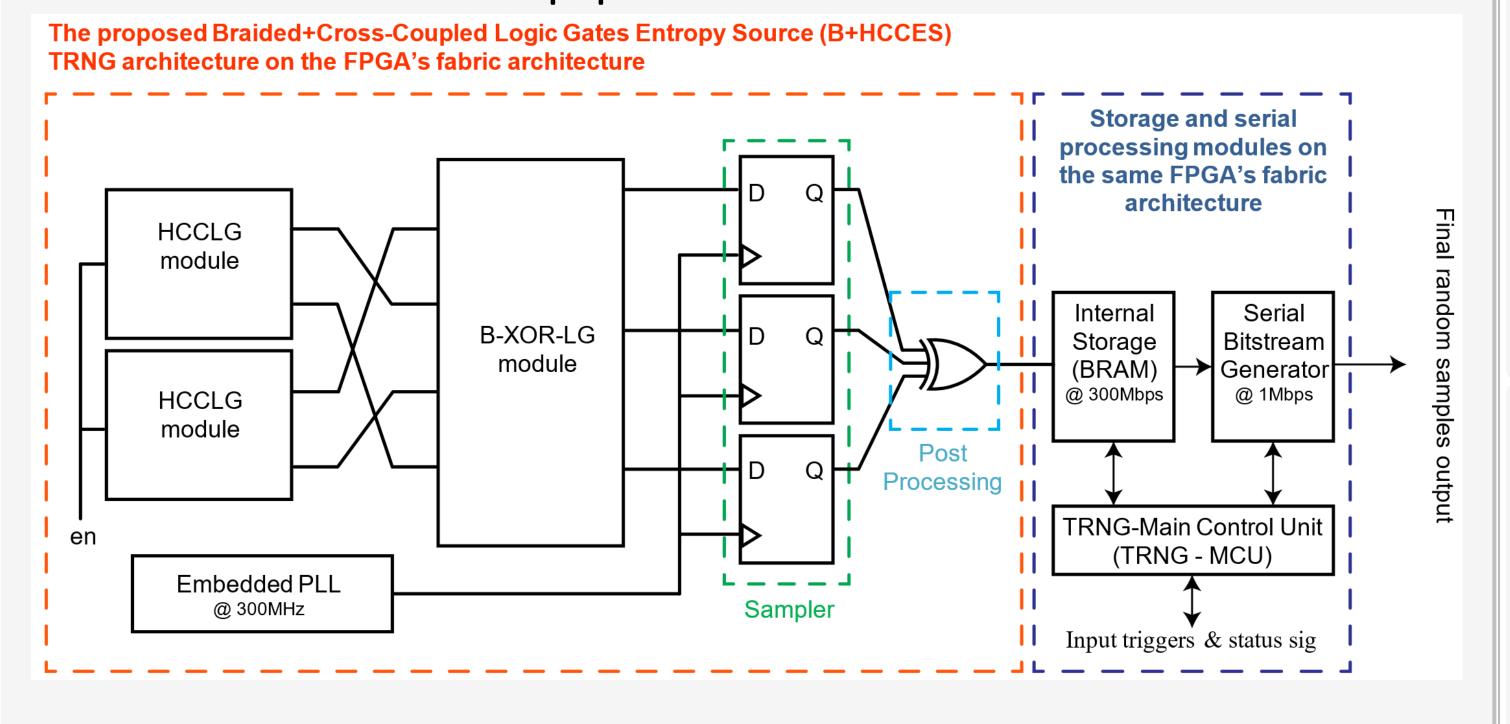


Figure 2: The detailed structure of the B+HCCES TRNG architecture with the storage control module, and the serial module.

References

[1] H. O. Ahmed, D. Kim and W. J. Buchanan, "A True Random Number Generator Based on Race Hazard and Jitter of Braided and Cross-Coupled Logic Gates Using FPGA," in IEEE Access, vol. 12, pp. 182943-182955, 2024.

The Summary of Computational Performance and Power Consumption for the Proposed B+HCCES Unit Across the FPGA Chip

Combinational ALUT	23
Dedicated Flip-flops	3
ALMs needed [A-B+C] *	11.5
Combinational cell thermal power dissipation	0.02 mW
Clock enable block thermal power dissipation	1.79 mW
Register cell thermal power dissipation	0.04 mW
I/O thermal power dissipation	2.46 mW
Total thermal power dissipation	4.31 mW
Energy efficiency (pJ/bit)	0.01436

Entropy Test Results

RESULTS OF AIS-31 TEST			RESULTS OF NIST SP90-B TEST			
	TEST	Pass Rate	Test	C[0]	C[1]	C[2]
P1/T0 P1/T1	Disjointness Monobit	Passed 257/257	Excursion	18	0	6
P1/T2	Poker	257/257	NumDirectionalRuns LenDirectionalRuns	6 17	0 6	9 0
P1/T3 P1/T4	Run Long run	257/257 257/257	NumIncreasesDecreases NumRunsMedian	66 53	0 1	6 5
P1/T5 T6-a	Auto-correlation Uniform dist. (S<0.025)	257/257 $ P(1) - 0.5 = 0.001730$	LenRunsMedian AvgCollision	420 6	6	0
T6-b	Uniform dist. (S<0.020)	p(01) = 0.50044 p(11) = 0.49811	MaxCollision periodicity (1) Periodicity (2)	4 70 21	2 0 0	28 6 6
T7-a	Comparative multinomial, width=3 (S<15.13)	$ p_{(01)} - p_{(11)} = 0.002329$ test size $[0] = 0.269121$ test size $[1] = 0.006480$	Periodicity (8) Periodicity (16) Periodicity (32) Covariance (1)	6 64 56	0 0 1 0	37 6 5
T7-b	Comparative multinomial, width=4 (S<15.13)	test size $[0] = 0.095220$ test size $[1] = 3.836958$ test size $[2] = 0.144500$ test size $[3] = 0.856983$	Covariance (1) Covariance (2) Covariance (8) Covariance (16) Covariance (32)	15 12 6 136	0 0 0 0	6 6 28 6
Т8	Entropy (S>7.976)	7.996781	Compression Chi-square independence	6 p-valu	0 $e = 0.594$	9 202
			Chi-square goodness of fit length of longest repeated substring test Restart test Min entropy per bit	_	e = 0.517 d d	

Restart Test Results

Min entropy per Byte

7.938744

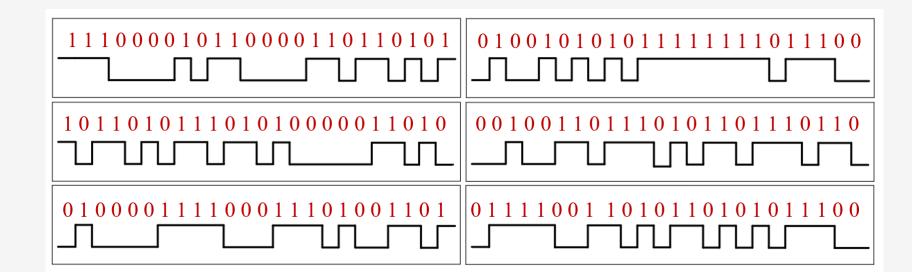


Figure 3: Test results of six restart cycles.

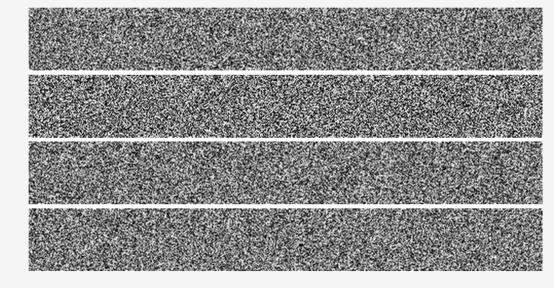


Figure 4: Distributions of four power-up batches: Each batch consists of 250 samples, each with a 1000-bit length.

Conclusion and Future Work

- **High Throughput:** The B+HCCES TRNG, implemented on a Cyclone-V GT FPGA, achieves a data rate of 300 Mbps.
- Resource Efficiency: Utilizes a minimal number of 23 LUTs and just 3 DFFs, ensuring efficient use of FPGA resources.
- Standards Compliance: Successfully passes stringent evaluations, including the NIST SP800-90B and BSI AIS-31 test suites for randomness and entropy quality.
- Scalability and Adaptability: The architecture is highly scalable, making it suitable for a wide range of applications without sacrificing performance.
- **Security and Reliability:** Sets a new benchmark in random number generation for FPGA-based systems, enhancing the security and reliability of cryptographic and Al applications.
- Future-Proof Design: The efficient architecture paves the way for further innovation and adoption of high-quality TRNGs in advanced digital systems.

