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1. Application HiEEE
Tailoring hardware to applications significantly * Running MLPerf Inference:
increases their performance. Tiny Deep Learning Benchmarksfor | | & @ " s =8
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. Embedded Devices
Virtual Prototypes (VPs) enable early software _ o
development and design space exploration E.g., a ResNet8 image classification model
trained on the CIFAR10 dataset

RISC-V Opt-VP is a Virtual Prototype driven Using TensorFlow Lite for Microcontrollers
binary analysis platform

1" TensorFlow

By analyzing the execution, it identifies
instruction sequences that are promising
candidates for hardware optimization Compress trace data into execution trees
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Figure 1: Excerpt of bounded execution tree for the ADD instruction
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Figure 2: Instruction distribution for image recognition Choose a set of metrics that match
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5. Work in Progress

Implement behavior on VP/TLM level
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" Estimate performance impact
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Generate RTL design using SpinalHDL
Use Co-Simulation to compare results
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Figure 3: Execution tree (ADD) and corresponding functions
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“ Full tracing and analysis of new
Embench set up to depth 10

Coverage as optimization target
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Score = % of execution accelerated

Showcases the effectiveness of
custom instructions for different
applications
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